Gabarito Exame Extramuros - Doutorado - 2017

Questão 1: Sejam X e Y subconjuntos disjuntos de \mathbb{R}^n . Mostre que se X é compacto e Y é fechado, então d(X,Y) > 0, onde

$$d(X,Y) = \inf\{\|x - y\| \; ; \; x \in X, \; y \in Y\}.$$

Solução: Suponhamos, por absurdo, d(X,Y) = 0. Pela definição de ínfimo, existe, para cada $n \in \mathbb{N}$, $(x_n, y_n) \in X \times Y$ tal que

$$0 \le ||x_n - y_n|| < 1/n. \tag{0.1}$$

Pela desigualdade triangular, temos

$$||y_n|| \le \frac{1}{n} + ||x_n||, \forall n \in \mathbb{N}.$$

Como X é limitado, a sequência x_n é limitada e concluímos que a sequência y_n também é limitada. Portanto, passando a uma subsequência se necessário, podemos supor que existem $x, y \in \mathbb{R}^n$ tais que $x_n \to x$ e $y_n \to y$. Sendo x e y pontos de acumulação de X e Y respectivamente e, sendo estes conjuntos fechados, concluímos que $x \in X$ e $y \in Y$.

Passando ao limite em (0.1) com $n \to \infty$, obtemos x = y, o que é absurdo, pois, por hipótese, X e Y são disjuntos.

Questão 2: Seja $f: \mathbb{R} \to \mathbb{R}$ função de classe C^1 tal que $0 < f'(t) \le 1$, para todo $t \in [0,1]$ e f(0) = 0. Mostre que

$$\left(\int_{0}^{1} f(t) dt\right)^{2} \ge \int_{0}^{1} f^{3}(t) dt.$$

Solução: Consideremos $g:[0,1]\to\mathbb{R}$ definida por

$$g(x) = \left(\int_0^x f(\tau) d\tau\right)^2 - \int_0^x f^3(\tau) d\tau.$$

Pelo Teorema Fundamental do Cálculo e Regra da Cadeia, g é dferenciaável em (0,1) e

$$g'(x) = f(x) \left[2 \int_0^x f(\tau) d\tau - f^2(x) \right] := f(x)h(x).$$

Observemos que

$$h'(x) = 2f(x)(1 - f'(x)) \ge 0, \forall x \in (0, 1).$$

Logo, g é crescente e g(0) = 0, o que implica $g(1) \ge g(0) = 0$, como queriímos provar.

Questão 3: Seja $N: \mathbb{R}^n \to [0, +\infty)$ satisfazendo

$$\begin{cases} (i) & N(x) = 0 \Leftrightarrow x = 0, \\ (ii) & N(\lambda x) = |\lambda| N(x), \ \forall \lambda \in \mathbb{R}, \ \forall x \in \mathbb{R}^n \end{cases}$$

Definimos a bola unitária B associada a N por $B = \{x \in \mathbb{R}^n ; N(x) \leq 1\}$. Prove que N é uma norma se, e somente se, B é uma parte convexa de \mathbb{R}^n .

Solução: (\Rightarrow). Assuma que N é uma norma. Sejam $x, y \in B$ e $\theta \in [0, 1]$. Então, obtemos da desigualdade triangular e da propriedade (ii) que

$$N(\theta x + (1 - \theta)y) \le \theta N(x) + (1 - \theta)N(y) \le \theta + (1 - \theta) = 1.$$

Logo, $\theta x + (1 - \theta)y \in B$ e B é convexo.

(⇐). Assuma reciprocamente que B é convexo. Precisamos provar a desigualdade triangular. Sejam $x, y \in \mathbb{R}^n \setminus \{0\}$. Definimos $z = \frac{1}{N(x) + N(y)}(x + y)$. Então, podemos escrever

$$z = \frac{N(x)}{N(x) + N(y)} \frac{x}{N(x)} + \frac{N(y)}{N(x) + N(y)} \frac{y}{N(y)}.$$

Isso implica que z é uma combinação convexa de $\frac{x}{N(x)}$ e $\frac{y}{N(y)}$, com ambos pertencentes a B, pela propriedade (ii). Deduzimos da convexidade de B que $z \in B$, ou em outras palavras, $N(z) \leq 1$. Conluímos então que $N(x+y) \leq N(x) + N(y)$, o que prove que N é uma norma, já que x e y são arbitrários.

Questão 4: Uma função $f: \mathbb{R}^n \to \mathbb{R}$ é p-homogênea se $f(\lambda x) = \lambda^p f(x)$, $\forall \lambda > 0$ e $\forall x \in \mathbb{R}^n$. Se $\langle : \rangle$ denota o produto escalar usual, mostre que uma função diferenciável é p-homogênea se, e somente se, satisfaz a relação

$$\langle x : \nabla f(x) \rangle = pf(x), \quad \forall x \in \mathbb{R}^n.$$

Solução: Consideremos $\varphi:(0,+\infty)\to\mathbb{R},\ \varphi(\lambda)=\lambda^pf(x)$. É claro que $\varphi'(\lambda)=p\lambda^{p-1}f(x)$. Por hipótese, $\varphi(\lambda)=f(\lambda x)$ e como f é diferenciável, temos da regra da cadeia

$$\varphi'(\lambda) = \langle \nabla f(\lambda x) : x \rangle, \quad \forall \lambda > 0.$$

Assim, $p\lambda^{p-1}f(x) = \langle \nabla f(\lambda x) : x \rangle$ para todo $\lambda > 0$. Tomando $\lambda = 1$ obtemos

$$pf(x) = \langle \nabla f(x) : x \rangle$$

como queríamos provar.

Reciprocamente, suponhamos $f: \mathbb{R}^n \to \mathbb{R}$ diferenciável satisfazendo a propriedade

$$pf(x) = \langle \nabla f(x) : x \rangle, \quad \forall x \in \mathbb{R}^n.$$

Consideremos a função $\psi(\lambda) = f(\lambda x)$ definida para $\lambda > 0$. Então, pela regra da cadeia,

$$\psi'(s) = \langle \nabla f(\lambda x) : x \rangle = \frac{1}{\lambda} \langle \nabla f(\lambda x) : \lambda x \rangle = \frac{1}{\lambda} p f(\lambda x) = \frac{p}{\lambda} \psi(\lambda),$$

isto é,

$$\lambda \psi'(\lambda) - p\psi(\lambda) = 0, \quad \lambda > 0$$
 (*)

Multiplicando ambos os lados de (*) por λ^{-p-1} , temos

$$\lambda^{-p}\psi'(\lambda) - p\lambda^{-p-1}\psi(\lambda) = \frac{d}{d\lambda}\Big(\lambda^{-p}\psi(\lambda)\Big) = 0.$$

Portanto existe uma constante C tal que $\lambda^{-p}\psi(\lambda)=C$ para todo $\lambda>0$, isto é, $f(\lambda x)=\psi(\lambda)=C\lambda^p$, para todo $\lambda>0$. Tomando $\lambda=1$, obtemos f(x)=C. Assim, $f(\lambda x)=f(x)\lambda^p$ para todo $\lambda>0$, o que significa dizer que f é p-homogênea.

Questão 5: Seja G_n^+ o conjunto das matrizes reais simétricas e positivas de ordem n. Lembrando que

$$\int_{-\infty}^{\infty} \exp(-\alpha x^2) \, dx = \sqrt{\pi/\alpha}, \quad \alpha > 0,$$

mostre que

$$\int_{\mathbb{R}^n} \exp\left(-\frac{\langle Ax : x \rangle}{2}\right) dx = \frac{(2\pi)^{n/2}}{\sqrt{\det(A)}}, \quad \forall A \in G_n^+.$$

Solução: Como A é matriz simétrica e positiva, o Teorema Espectral nos garante que A possui n autovalores positivos, $\lambda_1, \dots, \lambda_n$. Mais precisamente, existe uma matriz unitária U tal que

$$U^{T}AU = D = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$$
 (0.2)

Consideremos $G: \mathbb{R}^n \to \mathbb{R}^n$ definido por G(u) = Uu. Então, para a substituição x = G(u) temos $dx = |\det U| du = du$ e

$$\langle Ax : x \rangle = \langle AUu : Uu \rangle = \langle U^T AUu : u \rangle = \langle Du : u \rangle = \sum_{i=1}^n \lambda_i u_i^2.$$

Pelo Teroema de Fubini,

$$\int_{\mathbb{R}^n} \exp\left(-\frac{\langle Du:u\rangle}{2}\right) du = \prod_{i=1}^n \int_{\mathbb{R}} e^{-\lambda_i u_i^2/2} du_i = \frac{(2\pi)^{n/2}}{\sqrt{\lambda_1 \lambda_2 \cdots \lambda_n}}.$$

Lembrando que $\det[A] = \det[D] = \lambda_1 \lambda_2 \cdots \lambda_n$, concluímos a solução.

Observação: Uma segunda solução é considerar que toda matriz simétrica e positiva possui uma raiz quadrada, isto é, se $A \in G_n^+$, então existe $B \in G_n^+$ tal qe $B^2 = A$. Isso é consequência imediata do Teorema Espectral. De fato, se $A \in G_n^+$, então existe U unitária satisfazendo (0.2). Seja \sqrt{D} a matriz definida por

$$\sqrt{D} = \begin{pmatrix} \sqrt{\lambda_1} & 0 & \cdots & 0 \\ 0 & \sqrt{\lambda_1} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sqrt{\lambda_n} \end{pmatrix}$$

Então $B=U^T\sqrt{D}U$ é raiz quadrada de A.

Voltando ao problema, se u = Bx, temos $du = |\det(B)| dx$ e

$$\int_{\mathbb{R}^n} \exp\left(-\frac{\langle Ax : x \rangle}{2}\right) dx = \int_{\mathbb{R}^n} \exp\left(-\frac{\langle B^2x : x \rangle}{2}\right) dx = \int_{\mathbb{R}^n} \exp\left(-\frac{\langle Bx : Bx \rangle}{2}\right) dx$$
$$= \int_{\mathbb{R}^n} \exp\left(-\frac{\|u\|_2^2}{2}\right) \left|\frac{1}{\det(B)}\right| du = \frac{(2\pi)^{n/2}}{\det(B)}$$

e concluímos a solução, já que $\det(B) = \sqrt{\det(A)}$.