Resultados da Prova Extramuros 2022 - Nível Doutorado

Protocolo	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12	Total de pontos dentro os 14 possíveis
00663263310149068204213189266047	2	2	1	2	0	1	1	2	1	0		0	7.5
01680131301030785748043299712867													
01776676003266732787223547007410	0	2	1	0	1	0	1	0	1	3		1	6
08474242930470844394380011390379	2	2	3	0	1	1	1	0	1	3		0	8.5
09175551215958879697651923528039													
11328970078070617629735551860348	0	2	2	0	3	1	0	2	1	1		0	7
12429400175953342123847336240258													
19287413373707624891614412553608													
19673026686552834530078403174107	0	0	3	0	3	1	1	1	1	3		2	9
22873055719285504353261087195069													
23793407723105464180781147067064													
36141083591895635983366610194458	2	2	3	0	2	1	1	2	1	3		1	10.5
45126039313676699389719041819990													
48905979395358685735911035605982	0	2	1	1	3	1	0	2	0	3		3	8.5
51531291849853421354873813660526	1	2	1	0	2	1	0	4	1	1		0	7.5
53720079318180845428478868385175	2	2	3	2	2	1	1	0	1	2		3	11
54267534370653349659115055047597													
58093901164023857536786106785677													

Protocolo	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12	Total de pontos dentro os 14 possíveis
62064080497107537602725064702415													
63083878454804000238322188797417													
64391743613868726003386198663356	2	0	1	0	0	1	0	0	1	3		1	5.5
65341501804785782060973756575831	0	0	1	0	0	0	1	0	0	3		0	3
65735409323159864331836346099551													
66130047827735912783067152616388	0	0	3	2	3	1	1	4	1	3		1	11
68717694521452096274227120221037	1	0	1	0	3	1	1	0	1	3		0	7
70174619055539659462299578766136	2	2	1	0	2	1	1	4	1	2		1	10
71593861846705782399499587087948	2	0	0	2	2	1	1	4	1	2		0	9
73241629197867470493924439228867													
74148776041280069488128572366433													
74849156669769302062725099259711	0	2	0	0	1	1	1	3	0	0		0	5
76088693644199788539455768579278	2	0	3	0	1	1	1	0	1	0		0	6
76090477095807585532442301172176	0	0	3	0	0	1	1	0	1	1		0	5
76909849206983827017925533591940	2	0	3	2	3	1	1	2	0	2		0	9
78591110129667053135411642935799													
85855597397087003446690045983417	2	0	0	0	2	1	1	0	0	0		1	4.5
85867992633140745788462415354285													
88449406134192293830799600810058													
91563397835690617148029022032016	2	0	3	0	0	1	0	0	0	1		1	4.5
98155901400187407932344989214520													
98489519333180596339200424190646													
99298091552130243739633638916192													
99509590672798851465019851107472													

Prova Extramuros 2022 - Doutorado

Observação: Esta prova tem duração de cinco (5) horas

Questão 1 (1p). Seja $U \subset \mathbb{R}^n$ aberto $(n \ge 2)$ e $f: U \to \mathbb{R}$ parcialmente diferenciável em U com derivadas parcias contínuas em U. Selecione as afirmações corretas.

- (a) f é contínua em 0.
- (b) f é continuamente diferenciável em U.

Solução 1. (a) 0 não pertence necessariamente a U.

(b) P. ex. Theorem 6.3.8 em Tao - Analysis II, 3rd edition. Texts and Readings in Mathematics, Volume 38 (2016).

Questão 2 (1p). Seja $\Delta \subset [0,1]^n$, $n \ge 2$ tal que o fecho de Δ é $[0,1]^n$ (i.e., Δ é denso em $[0,1]^n$). Suponha que U é um aberto tal que $\Delta \subset U$. Selecione as afirmações corretas.

- (a) $U \supset [0,1]^n$.
- (b) U é denso em $[0,1]^n$.

Solução 2. U é denso pois $[0,1]^n = \overline{\Delta} \subset \overline{U} \subset [0,1]^n$. Do outro lado, se Δ possui uma representação $\Delta = \{x_n : n = 1,2,...\}$ (i.e. Δ é enumerável),

$$U := \bigcup_{n=1}^{\infty} \{ y : ||x_n - y|| \le 3^{-n} \}$$

é aberto e Vol(U) ≤ 1/2. Daí, $[0,1]^n$ não é um subconjunto de U.

Questão 3 (1.5p). Considere o conjunto de sequências $\Sigma = \{(a_n)_{n \geq 1} : a_n \in \{0,1\}\}$. Dado $\theta = (a_n)_{n \geq 1} \in \Sigma$ associe o número

$$\omega(\theta) = \sum_{n \ge 1} \frac{a_n}{3^n}.$$

Para o conjunto de números reais $\Lambda = \{\omega(\theta) : \theta \in \Sigma\}$ selecione as afirmações corretas.

(a) Λ é fechado.

- (b) Λ é conexo
- (c) Λ não tem pontos isolados.

Solução 3.

Considere a métrica d em Σ dada por $d(\theta, \beta) = \sum_{i=1}^{\infty} \frac{|a_n - b_n|}{2^n}$, onde $\theta = (a_n)$ e $\beta = (b_n)$. O espaço (Σ, d) é métrico compacto. Além disso, ω torna-se uma função continua.

- (a) Λ é compacto, sendo imagem de um conjunto compacto por uma função continua.
- (b) Λ é um conjunto de medida zero. Daí, Λ contém nenhum intervalo. Do outro lado, $0 = \omega(0,0,\ldots) \in \Lambda$ e $1/2 = \omega(1,1,\ldots) \in \Lambda$.
- (c) Seja $x = \omega((a_n)) \in \Lambda$ e $k \in \mathbb{N}$. Para (\overline{a}_n) definido por $\overline{a}_n := a_n$ para $n \neq k$ e $\overline{a}_k := a_k + 1$ mod 2, obtém-se que

$$|\omega((a_n)) - \omega((\overline{a}_n))| = 3^{-k}$$

Daí, x não é isolado.

Questão 4 (1p). Seja U uma vizinhança de 0 em \mathbb{R}^n , $n \ge 2$ e $f: U \to \mathbb{R}$ uma função tal que o limite

$$\lim_{t\to 0} \frac{f(tv) - f(0)}{t}$$

existe para qualquer $v \in \mathbb{R}^n$. Selecione as afirmações corretas.

- (a) f é contínua em 0.
- (b) f é diferenciável em 0.

Solução 4. Escolhe uma função ilimitada $g : \{x : ||x|| = 1\} \to \mathbb{R}$ e define f(x) := ||x||g(x/||x||). Como g é ilimitada, existe x_n tal que $|g(x_n)| > n^2$. Daí, $\lim_n |f(x_n/n)| \ge \lim_n n = \infty$.

Questão 5 (1.5p). Assuma que a série $\sum_{n\geq 1} a_n$ converge, $a_n\geq 0$. Selecione as afirmações corretas.

- (a) A série $\sum_{n>1} \frac{a_n}{n}$ converge.
- (b) A série $\sum_{n\geq 1} \frac{\sqrt{a_n}}{n}$ converge.
- (c) A série $\sum_{n\geq 1} \frac{\sqrt{a_n}}{n^{2/3}}$ diverge.

- **Solução 5.** (a) Note simplesmente que $0 \le \frac{a_n}{n} \le a_n$. Portanto, pelo critério de comparação a série $\sum_{n \ge 1} \frac{a_n}{n}$ converge.
 - (b) Usando a desigualdade de Cauchy-Schwarz temos que

$$\left(\sum_{i=1}^{n} \frac{\sqrt{a_i}}{i}\right)^2 \le \left(\sum_{i=1}^{n} \sqrt{a_i}^2\right) \left(\sum_{i=1}^{n} \frac{1}{i^2}\right) = \left(\sum_{i=1}^{n} a_i\right) \left(\sum_{i=1}^{n} \frac{1}{i^2}\right)$$

Como por hipóteses $\sum_{n\geq 1} a_n$ converge and a p-série $\sum_{n\geq 1} \frac{1}{n^2}$ converge, então o lado direito da desigualdade anterior é limitado, logo $\sum_{i=1}^n \frac{\sqrt{a_i}}{i}$ é limitado e sendo a soma parcial de números não negativos temos a convergência da série em questão.

(c) Analogamente, como no item (b) a série converge.

Questão 6 (1p). É possível representar o conjunto dos (x, y, z) tais que $xy - z \log y + e^{yz} - e = 0$ na forma z = f(x, y) nas proximidades do ponto (0, 1, 1)?

Solução 6. Seja $g(x, y, z) = xy - z \log y + e^{yz} - e$, definida em $\mathbb{R} \times (0, +\infty) \times \mathbb{R}$. Temos que g(0, 1, 1) = 0 e $g \in \mathbb{C}^1$. Além disso,

$$\frac{\partial g}{\partial z}(x, y, z) = -\log y + ye^{yz},$$

logo $\frac{\partial g}{\partial z}(0,1,1)=e\neq 0$. Assim, pelo Teorema da Função Implícita, existe uma vizinhança do ponto (0,1,1) onde o conjunto $\{(x,y,z):g(x,y,z)=0\}$ é o gráfico de uma função C^1 , f(x,y), ou seja, $\{(x,y,z):z=f(x,y)\}$.

Questão 7 (1p). O ponto P = (1, -1, 2) pertence à interseção das superfícies definidas por $x^2(y^2 + z^2) = 5$ e $(x - z)^2 + y^2 = 2$. A curva formada pela interseção dessas duas superfícies admite, perto do ponto P, uma parametrização da forma (x, f(x), g(x)).

Solução 7. Seja $f: \mathbb{R}^3 \to \mathbb{R}^2$ definida por

$$f(x, y, z) = (x^{2}(y^{2} + z^{2}) - 5, (x - z)^{2} + y^{2} - 2).$$

Então, f(P) = 0. A matriz [f'(x, y, z)] tem 2 linhas e 3 colunas. Como queremos expressar as variáveis y, z em função de x, temos de ver se é não nulo o determinante da submatriz de [f'(P)] formada apenas por

$$\left[\begin{array}{cc} \frac{\partial f_1}{\partial y} & \frac{\partial f_1}{\partial z} \\ \\ \frac{\partial f_2}{\partial y} & \frac{\partial f_2}{\partial z} \end{array}\right].$$

Calculando essas derivadas, avaliando em P, e calculando o determinante vemos que ele vale $4 \neq 0$. Assim, pelo Teorema da Função Implícita, existe uma função $\varphi: I \to \mathbb{R}^2$ definida em um intervalo suficientemente pequeno $(1-\delta,1+\delta)$ tal que para todo $x \in I$, o conjunto $\{(x,y,z): f(x,y,z)=(0,0)\}$ é o gráfico $\{(x,y,z): (y,z)=\varphi(x)\}$. Escrevendo $\varphi(x)=(f(x),g(x))$, obtemos o resultado.

Questão 8 (2p). Considere a integral de linha

$$I_n = \int_{C_n} \frac{1}{x^2 + y^2} (x \, dy - y \, dx),$$

onde C_n é o círculo $(x-n)^2+y^2=(3/2)^2$. Então, selecione as afirmações corretas :

- (a) $I_0 = 0$,
- (b) $I_1 = 0$,
- (c) $I_2 = 0$,
- (d) $I_3 = 2\pi$.

Solução 8. Seja $\theta = \frac{1}{x^2 + y^2} (x \, dy - y \, dx)$. Primeiro, verificamos que $d\theta = 0$:

$$d\theta = \left(\frac{x^2 + y^2 - x \cdot 2x}{(x^2 + y^2)^2}\right) dx \wedge dy - \left(\frac{x^2 + y^2 - 2y^2}{(x^2 + y^2)^2}\right) dy \wedge dx,$$
$$= \frac{-x^2 + y^2 + x^2 - y^2}{(x^2 + y^2)^2} dx \wedge dy = 0.$$

Isso é dizer que θ é uma 1-forma fechada em $\mathbb{R}^2 \setminus \{0\}$. Observamos que os círculos C_2 e C_3 são homólogos a 0 em $\mathbb{R}^2 \setminus \{0\}$, então pelo teorema de Stokes, $\int_{C_2} \theta = \int_{C_3} \theta = 0$. Também, C_0 e C_1 são homólogos um ao outro em $\mathbb{R}^2 \setminus \{0\}$, então $\int_{C_0} \theta = \int_{C_1} \theta$. Esse valor pode ser calculado pela integral de linha em C_0 :

$$x = 3/2\cos(t), y = 3/2\sin(t),$$

$$dx = -3/2\sin(t)dt dy = 3/2\cos(t)dt$$

$$\int_{C_0} \theta = \int_0^{2\pi} \frac{(3/2)^2(\cos^2(t) + \sin^2(t))}{(3/2)^2}dt = 2\pi.$$

Questão 9 (1p). Considere o espaço V das matrizes $n \times n$, munido da norma qualquer. Dizemos que $B \in V$ é uma raiz quadrada de A se $B^2 = A$. Existe $\delta > 0$ tal que, se $\|A - I\| < \delta$, então A admite uma raiz quadrada.

Solução 9. Primeiro observe que $I^2 = I$, logo I admite raiz quadrada. Considere a função $f: V \to V$, $f(B) = B^2$. Calculemos sua derivada. Temos

$$f(B+H) = B^2 + BH + HB + H^2$$
.

Então, pondo $\epsilon(H) = H^2$, vemos que para cada $B \in V$, f'(B) é o operador linear de V em V que a cada $H \in V$ faz corresponder f'(B)(H) = BH + HB. Assim, f'(I)(H) = 2H (ou, por outras palavras, f'(I) = 2I). Vemos então que $f'(I) \in GL(V)$ é invertível.

Supondo que provámos que $f \in C^1$, então pelo Teorema da Função Inversa, concluímos que existe W uma vizinhança suficientemente pequena de f(I), que podemos tomar da forma $\{A: \|A-f(I)\| < \delta\}$, tal que f^{-1} é uma bijeção entre W e uma vizinhança de I. Isso quer dizer exatamente que para cada A em W, existe um (único) B (que está perto de I) tal que f(B) = A, ou $B^2 = A$.

Questão 10 (1.5p). Seja $f: \mathbb{R}^n \to \mathbb{R}^n$ uma aplicação diferenciável com inversa diferenciável. Um ponto p é dito fixo se f(p) = p. Para um ponto fixo p denotemos por

$$\sigma_p(f) = {\lambda : \lambda \text{ \'e um autovalor de } Df_p}$$

o espectro da diferencial de Df_p .

Além disso, dizemos que p é hiperbólico se $\sigma_p(f) \cap S^1 = \emptyset$, *i.e.*, não existe autovalores de modulo 1. Selecione as afirmações corretas.

- (a) Sempre existem pontos fixos.
- (b) Pontos fixos são isolados.
- (c) Pontos fixos hiperbólicos são isolados.

Solução 10. (a) Tome $v \in \mathbb{R}^n \setminus \{0\}$ e tome f(x) = x + v. Claramente, f não tem pontos fixos. Logo a afirmação é falsa.

- (b) Tome f(x) = x. Logo a afirmação é falsa.
- (c) Assuma que f(p) = p é fixo hiperbólico. Assuma por contradição que existe p_n pontos fixos *i.e.*, $f(p_n) = p_n$ tal que $p_n \to p$. Então usando a série de Taylor para f centrada em p temos

$$p - p_n = f(p) - f(p_n) = Df(p)(p - p_n) + A(P - P_n),$$

onde $\lim_{n \to \infty} \frac{A(p-p_n)}{||p-p_n||} = 0$. Como $\left|\frac{p-p_n}{||p-p_n||}\right| = 1$, então passando a uma subsequência assuma que $\frac{p-p_n}{||p-p_n||} \to v \neq 0$. Portanto, passando da equação anterior temos que Df(p)(v) = v e p não é fixo hiperbólico.

Questão 11 (Cancelada). Seja $\Delta \subset [0,1]^n$, $n \ge 1$ tal que o fecho de Δ é $[0,1]^n$ (i.e., Δ é denso em $[0,1]^n$), e suponha que $f: \Delta \to \mathbb{R}$ é contínua. Selecione todas as afirmações corretas.

- (a) Então, existe uma função contínua $\overline{f}:[0,1]^n\to\mathbb{R}$ tal que $f|_{\Delta}=\overline{f}$.
- (b) Se f é limitado, então existe uma função contínua \overline{f} : $[0,1]^n \to \mathbb{R}$ tal que $f|_{\Delta} = \overline{f}$.
- (c) Se f é Lipschitz contínua então existe uma função Lipschitz contínua $\overline{f}:[0,1]^n\to\mathbb{R}$ tal que $f|_{\Lambda}=\overline{f}$.
- (d) Se existe $\overline{f}:[0,1]^n \to \mathbb{R}$ contínua tal que $f|_{\Lambda} = \overline{f}$, então f é unicamente determinado.

Solução 11. (a,b) Seja $f:(0,1] \to \mathbb{R}$, $x \mapsto \sin(1/x)$. Então, $\lim_{x\to 0} f(x)$ não existe.

(c) Note que a condição de Lipschitz implica que $(f(x_n))$ é uma sequencia de Cauchy se (x_n) é Cauchy. Em particular, $\lim_n f(x_n)$ existe. Sejam $x, y \in [0, 1]^n$ e (x_n) , (y_n) sequencias tal que $x_n \to x$ e $y_n \to y$. Então,

$$\lim_n |f(x_n) - f(y_n)| \le C \lim \|x_n - y_n\| = C \|x - y\|.$$

Em escolher x = y, ontém-se que a função def. por $\overline{f}(x) := \lim_n f(x_n)$ é bem definida. Além disso, para x, y qualquer, obtém-se que \overline{f} é Lipschitz.

(d) A continuidade e existencia de \overline{f} implica que

$$\lim_{n} f(x_n) = \lim_{n} f(y_n) = \overline{f}(x)$$

para (x_n) , (y_n) com $x_n \to x$, $y_n \to x$. Então, qualquer extensão contínua de f tem que ser igual a \overline{f} .

Observação: No enunciado, há um erro de digitação: $f|_{\Delta}=\overline{f}$ deve-se ler $\overline{f}|_{\Delta}=f$. Por esta razão, a questão foi cancelada.

Questão 12 (1.5p). Seja $A \subset \mathbb{R}^n$ um conjunto limitado tal que para cada par de elementos $x, y \in A$, existe um caminho $\gamma : [0,1] \to A$ contínuo e retificáve $\stackrel{?}{\square}$ com $\gamma(0) = x$ a $\gamma(1) = y$. Além disso, seja

$$\delta(x, y) := \inf\{\ell(\gamma) : \gamma : [0, 1] \to A \text{ cont. e retificável com } \gamma(0) = x, \gamma(1) = y\},$$

onde $\ell(\gamma)$ é o comprimento da curva γ . Selecione todas as afirmações corretas :

¹A função f é Lipschitz contínua se existe C > 0 tal que $|f(x) - f(y)| \le C||x - y|| \forall x, y \in \Delta$.

²Ou seja, $\ell(\gamma) := \lim_{n \to \infty} \sum_{k=1}^{n} \| \gamma(k/n) - \gamma((k-1)/n) \|$ existe e é finito.

- (a) δ é uma métrica
- (b) $\sup\{\delta(x, y) : x, y \in A\} < \infty$
- (c) Se A é compacta, $\sup\{\delta(x, y) : x, y \in A\} < \infty$
- **Solução 12.** (a) A desigualdade triangular é uma consequencia do fato que a concatenação de dois caminhos retificáveis é retificável. Para ver que $\delta(x, y) > 0$ para $x \neq y$ basta aplicar o fato que o \mathbb{R}^n é um espaço geodésico.
- (b-c) Escolhe uma curva $\gamma_1:[0,\infty)\to\mathbb{R}^n$ diferenciável e injetora tal que $\gamma([0,\infty))$ é um conjunto limitado e $\gamma(\infty):=\lim_t\gamma(t)\notin\gamma([0,\infty))$. Além disso, escolhe um caminho $\tilde{\gamma}:[0,1]\to\mathbb{R}^n$ retificável de $\gamma(0)$ a $\gamma(\infty)$ tal que $\tilde{\gamma}([0,1])\cap\gamma([0,\infty))=\{\gamma(0)\}$. Por exemplo, n=3 e

 $\gamma(t) := \frac{1}{t}(\cos t, \sin t, 0), \ \tilde{\gamma}(t) := (t, 0, t(1-t)).$

Neste caso, A é compacto e A é homeomorfo a um círculo. Em particular, para qualquer par $x, y \in A$, existe um caminho de x a y que não passa por $\gamma(\infty)$. Em particular, este caminho é retificável.

Do outro lado,

$$\lim_{t\to\infty}\delta(\gamma(\infty),\gamma(t))=\lim_{t\to\infty}\ell(\tilde{\gamma})+\ell(\gamma|_{[0,t]})=\infty.$$

Observação: Note que todo espaço métrico compacto tem diâmetro finito. Porém, o exemplo acima mostre que a topologia induzida por δ não necessariamente é compacta.

Pontuação. A pontuação de uma questão é determinado pela formula

$$(Pontua \tilde{\varsigma} ao\ max.) \times max \left\{0, \frac{\#\{respostas\ corretas\} - \#\{respostas\ erradas\}}{\#\{respostas\}}\right\}.$$

Exemplo: No caso de uma questão com 3 pontos, 2 respostas corretas, uma errada e três indecididas, a pontuação final é $3 \times \frac{2-1}{6} = 0.5$.

Prova Extramuros 2022 - Doutorado

		Id	lentidade e resp	oostas						
		Nome:								
	Ido	-	☐ Passaporte ☐ Cédula de identidade							
Iden	tidade (n		⊒ r assaporte	L Cedula d	e ideiitida	iue				
		· -								
institui	ção de ap									
	Ass	sinatura <u> </u>								
Resposta 1 (1p).			Resp	osta 8 (2p).						
(a) □ verídica	■ falso	□ não sei	(a)	□ verídica	■ falso	□ não sei				
(b) ■ verídica	□ falso	□ não sei	(b)) □ verídica	■ falso	□ não sei				
Resposta 2 (1p).			(c)	■ verídica	□ falso	□ não sei				
(a) □ verídica	■ falso	□ não sei	(d)) □ verídica	■ falso	□ não sei				
(b) ■ verídica	□ falso	□ não sei	Resp	osta 9 (1p).						
Resposta 3 (1.5p).			_	o ■ verídica	□ falso					
(a) ■ verídica	□ falso	□ não sei		osta 10 (1.5p)						
(b) □ verídica	■ falso	□ não sei	_) □ verídica	• ■ falso	□ não sei				
(c) ■ verídica	□ falso	□ não sei) □ verídica	■ falso	□ não sei				
Resposta 4 (1p).				verídica verídica	□ falso	□ não sei				
(a) □ verídica	■ falso	□ não sei			□ lais0	□ IIao sei				
(b) □ verídica	■ falso	□ não sei	_	osta 11 (0p).						
Resposta 5 (1.5p).) □ verídica	■ falso	□ não sei				
(a) ■ verídica	□ falso	□ não sei) □ verídica	■ falso	□ não sei				
(b) ■ verídica	□ falso	□ não sei	(c)	■ verídica	□ falso	□ não sei				
(c) □ verídica	■ falso	□ não sei	(d)	■ verídica	□ falso	□ não sei				
Resposta 6 (1p).			Resp	osta 12 (1.5p)).					
(a) ■ verídica	□ falso		(a)	■ verídica	□ falso	□ não sei				
Resposta 7 (1p).			(b)	□ verídica	■ falso	□ não sei				
(a) ■ verídica	□ falso		(c)	□ verídica	■ falso	□ não sei				